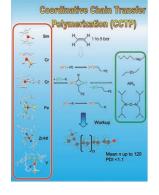

... and theoretical investigations has led to insight into the covalencies and bonding descriptions found in a series of transition-metal dithiolene complexes. In their Full Paper on page 2783 ff., F. Neese, K. Wieghardt et al. describe how they use X-ray absorption spectroscopy and time-dependent density-functional calculations to obtain new insights into the noninnocent nature of the dithiolate ligand.

GERMANY

France

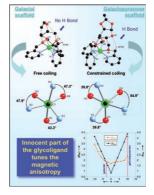
CZECH REPUBLIC

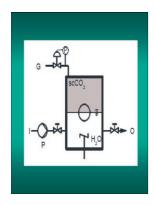
POLAND


SWEDEN

AUSTRIA

EUChemSoc




Polyethylene

In the Concept article on page 2764 ff., R. Kempe discusses how chain growth on main-group metal or zinc alkyls catalyzed by transition-metal or lanthanide complexes displays a highly efficient way to synthesize PE material in a very controlled fashion: narrowly distributed (PDI < 1.1) and with a molecular weight of choice up to 4000 g mol⁻¹.

Magnetic Anisotropy

In their Full Paper on page 2774 ff., T. Mallah, C. Policar et al. show that a galactal sugar scaffold, which has weak distribution of the azimuthal angles around the pseudothreefold axis, affords a negative D value (magnetic anisotropy parameter), whereas the conformation of the galactopyranose scaffold induces a constraint on the polydentate cavity leading to a large distribution of the azimuthal angles and thus to a positive D value.

Rh-Catalyzed Hydrogenation Reactions

In their Full Paper on page 2798 ff., W. Leitner et al. describe their development of an inverted supercritical carbon dioxide (scCO₂)/aqueous biphasic system to be used as reaction media for Rh-catalyzed hydrogenation of polar substrates. Excellent catalyst retention and stability in the scCO₂ phase was accomplished under repetitive-batch and semicontinuous operations.

Chemistry—A European Journal is jointly owned by the 14 Chemical Societies shown above and published by Wiley-VCH. This group of Societies has banded together as the **Editorial Union of Chemical Societies (EU** ChemSoc) for its combined publishing activities.